
Lecture 12: Hoeffding’s Bound

Hoeffding Bounds



Introduction I

One of the “easy to evaluate” forms of the Chernoff bound
states the following. Let (X1, . . . ,Xn) be independent random
variables such that 0 6 Xi 6 1, for each 1 6 i 6 n. Let
Sn,p = X1 +· · ·+ Xn, where np = E

[
Sn,p

]
. The bound we

proved was

P
[
Sn,p > n(p + ε)

]
6 exp(−2ε2n)

This bound can be equivalently be written as follows.

P
[
Sn,p > E

[
Sn,p

]
+ E

]
6 exp(−2E 2/n),

where we substituted E = nε.
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Introduction II

Let us change the random variables Xi as follows. Define
X∗i = Xi − E [Xi ]. Note that we have E

[
X∗i
]
= 0, for each

1 6 i 6 n. Define S∗n = X∗1 +· · ·+ X∗n. We have E
[
S∗n,p

]
= 0.

Note that P [S∗n > E ] is identical to P
[
Sn,p > E

[
Sn,p

]
+ E

]
.

So, we can claim that

P
[
S∗n > E

]
6 exp(−2E 2/n)

Hoeffding’s bound shall generalize this bound. In the next slide
we shall state the formal statement that we shall prove.
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Hoeffding’s Bound

We formally state the Hoeffding’s bound.

Theorem
Let X1, . . . ,Xn are independent random variables such that
E [Xi ] = 0 and ai 6 Xi 6 bi , for each 1 6 i 6 n. We define
Sn = X1 +· · ·+ Xn. Then, the following bound holds

P [Sn > E ] 6 exp

(
− 2E 2∑n

i=1(bi − ai )2

)

Comment. When bi − ai = 1 for all 1 6 i 6 n, we get the “first
form” of “easy to evaluate” Chernoff bound.
We emphasize that the Chernoff bound is much stronger than the
Hoeffding’s bound. It is only that the first form of the easy to
evaluate Chernoff bound is a special case of the Hoeffding’s bound.
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Proof of the Hoeffding’s Bound I

We are interested in upper-bounding

P [Sn > E ]

For any h > 0, we have

P [Sn > E ] = P
[
exp(hSn) > exp(hE )

]
By Markov inequality, we have

P
[
exp(hSn) > exp(hE )

]
6

E
[
exp(hSn)

]
exp(hE )

=
E
[∏n

i=1 exp(hXi )
]

exp(hE )

By independence of X1, . . . ,Xn, we have

E
[∏n

i=1 exp(hXi )
]

exp(hE )
=

∏n
i=1 E

[
exp(hXi )

]
exp(hE )
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Proof of the Hoeffding’s Bound II

Now, our objective is to upper-bound E
[
exp(hXi )

]
, where

ai 6 Xi 6 bi and E [Xi ] = 0. We have done this type of
upper-bound earlier. We showed that the maximum is
achieved by a distribution X∗i that puts the entire probability
mass either at ai or bi .

Suppose the probability mass of X∗i at ai is p. Then, the
probability mass of X∗i at bi is (1− p). The expected value of
X∗i is 0. So, we have pai + (1− p)bi = 0. That is, we have
p = bi/(bi − ai ). Therefore, we have
(1− p) = (−ai )/(bi − ai ).

For this distribution X∗i , the expected value of exp(hX∗i ) is

bi
bi − ai

exp(hai ) +
−ai

bi − ai
exp(hbi )
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Proof of the Hoeffding’s Bound III

So, we can conclude that

E
[
exp(hXi )

]
6

bi
bi − ai

exp(hai )−
ai

bi − ai
exp(hbi )

Substituting this upper-bound, we obtain∏n
i=1 E

[
exp(hXi )

]
exp(hE )

6

∏n
i=1

bi
bi−ai exp(hai )−

ai
bi−ai exp(hbi )

exp(hE )
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Proof of the Hoeffding’s Bound IV

At this juncture, we need a crucial lemma, namely, Hoeffding’s
lemma.

Lemma (Hoeffding’s Lemma)

For a 6 0 6 b, we have

b

b − a
exp(ha)− a

b − a
exp(hb) 6 exp(h2(b − a)2/8)

We shall prove this result later in this lecture using Lagrange
form of the Taylor’s remainder theorem. Currently, let us use
this result without proof and go forward.
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Proof of the Hoeffding’s Bound V

Using Hoeffding’s lemma, we have∏n
i=1

bi
bi−ai exp(hai )−

ai
bi−ai exp(hbi )

exp(hE )
6

∏n
i=1 exp(h

2(bi − ai )
2/8)

exp(hE )

=
exp

(
h2∑n

i=1(bi − ai )
2/8
)

exp(hE )

At this point, we have proven that, for any h > 0, we have

P [Sn > E ] 6
exp(h2α)

exp(hE )
,

where α =
∑n

i=1(bi − ai )
2/8 Our objective, is to pick h = h∗

that minimized the RHS. That is, equivalently, minimize
h2α− hE .

Clearly, at h∗ = E/2α the quantity is minimized.
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Proof of the Hoeffding’s Bound VI

For h = h∗, we have

exp(h2α− hE ) = exp(E 2/4α− E 2/2α) = exp(−E 2/4α)

Substituting the value of α, we get

exp(−E 2/4α) = exp

(
− 2E 2∑n

i=1(bi − ai )2

)

This completes the proof of Hoeffding’s bound.
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Proof of Hoeffding’s Lemma I

For a 6 0 6 b and h > 0, we need to prove the following

b

b − a
exp(ha)− a

b − a
exp(hb) 6 exp(h2(b − a)2/8)

Let us perform some variable substitutions. Let x = h(b − a)
and p = b/(b − a). Therefore, we can rewrite the old
expressions using the new variables as follows

hb = px

ha = −(1− p)x

− a

b − a
= 1− p
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Proof of Hoeffding’s Lemma II
So, we need to prove

p exp(−(1− p)x) + (1− p) exp(px) 6 exp(x2/8)

This statement is equivalent to proving

exp(px)
(
p exp(−x) + (1− p)

)
6 exp(x2/8)

Taking log both sides, this statement is equivalent to proving

f (x) := px + log(1− p + p exp(−x)) 6 x2/8

Now, let us compute the derivatives of f (x)

f (x) = px + log(1− p + p exp(−x))

f ′(x) = p − p exp(−x)
1− p + p exp(−x)

= p − p

(1− p) exp(x) + p

f ′′(x) =
p(1− p) exp(x)(

(1− p) exp(x) + p
)2
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Proof of Hoeffding’s Lemma III

We apply the Lagrange form of the Taylor’s remainder
theorem. For every x , there exists θ ∈ [0, 1] such that

f (x) = f (0) + f ′(0)x + f ′′(θx)
x2

2

Note that f (0) = 0 and f ′(0) = 0. Let us upper-bound f ′′(θx)
as follows

f ′′(θx) =
(1 − p) exp(θx) · p(
(1 − p) exp(θx) + p

)2
6

1(
(1 − p) exp(θx) + p

)2 (
(1 − p) exp(θx) + p

2

)2

By AM-GM

=
1
4
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Proof of Hoeffding’s Lemma IV

So, we conclude that

f (x) 6 0+ 0 · x +
1
4
· x

2

2
= x2/8

This completes the proof of Hoeffding’s Lemma.
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